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In t r o d u c t i o n

Since the dawn of human civilization, we have been 
cloaked in ignorance about the intricate mechanism 
of action of our own bodies. We knew nothing of the 
complex systems and biosignals that operated within us, 
as our understanding is limited to the tools we have at our 
disposal. Exploring the brain’s development takes us into 
the world of fetal growth. Every aspect of intelligence and 
consciousness begins in the womb. Here, the brain’s story 
unfolds, influenced by both genetics and environment. 
The evaluation of fetal behavior gives the opportunity to 
recognize the difference between normal and abnormal 
neurological development and even an early diagnosis of 
different structural or functional central nervous system 
abnormalities. Fetal neurological impairment disorders 
are a group of conditions that affect the development of 
the nervous system in the fetus. Similar to neurological 
impairment disorders, fetal disorders of this kind can occur 
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Ab s t r ac t
Background: Fetal neurological impairment disorders, encompassing conditions like cerebral palsy, epilepsy, and autism spectrum 
disorder, can result from various factors affecting fetal nervous system development. Timely diagnosis of these disorders is 
challenging but crucial for early intervention. Recent advancements in deep learning and ultrasound technology present an 
opportunity to develop a tool for early detection. 
Objective: This study aims to leverage convolutional neural networks (CNNs) to analyze fetal neurobehavioral movements in 
ultrasound images, with the goal of aiding in the early detection of neurological impairment disorders. 
Materials and methods: The study utilized a dataset of 3D ultrasound images extracted from 4D recordings of fetuses undergoing 
the Kurjak Antenatal Neurodevelopmental Test (KANET) during the third trimester. The methodology relies on the application of 
deep learning, more specifically convolutional neural networks (CNN) for the purpose of recognizing characteristic fetal movements.
Results: The custom CNN architecture achieved an overall accuracy of 93.83%.  The system was visualized by means of designing 
a graphical user interface that includes the developed model that works in the background every time a frame of a recorded 
4D ultrasound video is deemed to be parsed through the system. Notably, distinguishing between facial and hand-to-face 
movements proved challenging. This pilot study lays the foundation for AI-based fetal neurological risk assessment, providing 
a promising tool for the early detection of fetal neurological impairment disorders. 
Conclusion: While acknowledging limitations such as class imbalance and the absence of differentiation between specific facial 
expressions, the study demonstrates the potential of AI in enhancing prenatal care. Future work will involve expanding the 
dataset, conducting real-time clinical validations, and further refining the model. The research holds implications for improving 
outcomes for affected children and making advanced diagnostic capabilities accessible in diverse healthcare settings.
Keywords: Convolutional neural networks, Fetal neurological risk, 4D ultrasound, KANET, TRUEAID. 
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these diseases, this number is much lower. However, the 
race against time in terms of educating specialists around 
the world is certainly a lost battle without the application 
of today’s technological advances. One of the components 
of the KANET test is the assessment of general movement 
”gestalt perception,” which has been the subject of artificial 
intelligence (AI) application postnatally, but up to now, it 
has not been done prenatally.

The future of assessing fetal neurological risk lies in the 
convergence of technological innovations, genomic insights, 
and ethical advancements.11 In this evolving landscape, the 
focus extends beyond diagnostic precision to encompass 
the holistic well-being of the child and family. It’s a future 
where technology, ethics, and humanity converge, ensuring 
that each child, regardless of neurological risk status, is born 
into a world of optimized care, support, and opportunity. AI’s 
potential in the assessment of fetal neurological risk is not 
just about better accuracy. It’s about reshaping our ethical 
views and principles. The question is not just if AI can help 
but how it changes the human experience of these disorders.

Artificial Intelligence in Medicine
All AI methodologies have a certain niche for which they 
are most suitable. However, the most complex architectures 
are observed in neural networks. That, and their close 
resemblance to the human brain, had made neural networks 
the basis of deep learning (DL) involved in current scientific 
endeavors toward creating machines that are highly accurate 
and reliable.12

In general, AI represents all computer programs that 
are capable of mimicking processes that usually require 
human cognitive processes. It is a very broad field that 
continues to expand with the advent of computational 
technologies and capabilities. The terminology of AI is 
often used interchangeably with terms such as machine 
learning (ML) and artificial neural network (ANN), as well as 
DL, which is not entirely correct. The relationships between 
these terms, as well as their corresponding definitions, are 
shown in Figure 2.

The complexity of the field does not end with this 
classification. In addition to containing ANN and DL as 

due to a variety of factors, including genetic abnormalities 
and environmental factors. However, an additional risk 
factor for fetal neurological impairment disorders is 
complications during pregnancy and delivery. There are 
many types of fetal neurological impairment disorders, 
each with its own unique set of symptoms and causes. 
Some common examples include cerebral palsy (CP), 
intellectual disabilities, epilepsy, and autism spectrum 
disorder.

It has been proven by many studies that most neurological 
disorders like CP develop prenatally, while postnatal and 
intrapartum factors are not that important. Analysis of fetal 
behavior by four-dimensional (4D) ultrasound has been 
standardized in clinical practice, and the Kurjak antenatal 
neurodevelopmental test (KANET) is one example of such a 
test, followed by a postnatal neurological assessment. KANET 
stands as a peak advancement in the field of noninvasive 
prenatal neurodevelopmental testing. This test, a result of 
the work of a consortium led by Dr Asim Kurjak, marks a 
significant leap in perinatal neurology. KANET is not just a 
test; it’s proof of the fusion of cutting-edge technology and 
deep clinical understanding, offering an unprecedented 
insight into fetal neurobehavior. At the core of KANET’s 
groundbreaking approach is the use of 4D ultrasound 
technology. KANET represents a fundamental shift in how 
we perceive and analyze fetal development in real-time. The 
4D ultrasound stands out for its ability to provide dynamic, 
multidimensional visualizations of the fetus in utero, pushing 
the boundaries of our understanding of fetal neurological 
development.1,2

What sets KANET apart is its capacity for real-time, 
in-detail analysis. The 4D ultrasound creates a dynamic 
observational platform, turning every fetal movement and 
behavioral moment into a subject of detailed study. This is 
not just observation; it is a deep dive into the spectrum of 
neurobehavioral indices that serve as proxies for the complex 
neurodevelopmental processes unfolding within the fetal 
environment. KANET operates on the hypothesis that specific 
fetal movements and behaviors are direct reflections of the 
integrity and functionality of the developing neural structures 
and pathways.3 Each of the eight types of fetal movements 
assessed in the original KANET framework represents some 
of the intricate and profound developmental processes 
occurring within the womb (Fig. 1).

These movements, though seemingly simple, are the 
descriptors of neural pathways being formed, muscles being 
tested, and a primordial consciousness experiencing its 
existence for the first time.5–10

This test is performed by highly skilled professionals, 
fetal and pediatric neurologists, based on the results of 
prenatal ultrasound screening. These screening tests have 
high accuracy, but their implementation in healthcare 
depends on the existence and availability of skilled 
medical professionals. This presents a challenge in assuring 
equitable and high-quality healthcare services for everyone. 
In countries where there are trained specialists to recognize 
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Fig. 1:   Kurjak antenatal neurodevelopmental test (KANET) scoring system4

they can automatically learn and extract relevant features 
from complex data. Medical data, even for conditions with an 
established diagnostic procedure, are very complex due to 
the high redundancy of parameters and their patient-specific 
variability. ANNs are capable of capturing complex and 
nonlinear relationships between input features and output 
labels, allowing them to model complex decision boundaries 
between different classes.

subfields, ML encompasses all programming based on 
statistical techniques that enable computers to make 
predictions based on recognizing patterns without explicit 
instructions on how to perform the prediction.13

Deep learning (DL) using ANNs has gained popularity in 
recent years due to its ability to handle complex and high-
dimensional data for various tasks, including classification. 
ANNs are particularly effective for classification tasks because 
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Fig. 2:  Relationship between AI and its subfields

an activation function. Mathematically, this process can 
be represented as:
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Where:

•	 y is the neuron’s output,
•	 f is the activation function,
•	 w are the weights,
•	 x are the inputs, and
•	 b is the bias.

Activation functions introduce nonlinearity into the network, 
enabling it to learn complex patterns. Common activation 
functions include the sigmoid, tanh, and Rectified Linear Unit.

Artificial intelligence (AI) continues to revolutionize 
the field of medical diagnosis, with advancements in ML, 
particularly DL, leading the charge. These technologies have 
proven instrumental in enhancing the accuracy, speed, and 
efficiency of diagnosing a variety of medical conditions. 
The integration of AI in healthcare has been a subject of 
ongoing research and development over the past few 
years.15 AI systems, particularly ML and DL algorithms, have 
demonstrated unprecedented capabilities in diagnosing 
diseases, sometimes outperforming human clinicians.16

In addition to clinical decision support (CDS) systems 
(DSS), the application of AI and DSS extends toward the 
management and maintenance of medical equipment. 
As medical equipment stands at the forefront of medical 
decision-making, it is of utmost importance to ensure its 
performance and accuracy. The European Commission has 
stipulated the importance of this by introducing postmarket 
surveillance as mandatory in the new medical device 
regulation introduced in 2017 and put in force in 2022.17–19

Postmarket surveillance of medical devices20 has been 
proven useful in case studies conducted in Bosnia and 
Herzegovina, where a large number of medical devices 

Artificial neural networks (ANNs) are computational 
models inspired by the human brain’s structure and function. 
They consist of layers of nodes or ”neurons” connected by 
”synapses.” Each connection has a weight, representing its 
strength or influence. ANNs are popular in ML and AI for tasks 
like classification, regression, and pattern recognition. An 
ANN typically consists of an input layer, one or more hidden 
layers, and an output layer. Each layer has multiple neurons. 
The input layer receives the initial data, while the output layer 
produces the final output. The hidden layers perform complex 
computations to transform the input into the output.

During training, the network adjusts the weights and 
biases of the nodes to minimize the error between the 
predicted and actual output. The number of layers, nodes, 
and activation functions can vary depending on the task and 
the type of data being processed. The architecture of ANNs 
allows for the integration of multiple layers of nonlinear 
processing, which can capture increasingly abstract and 
complex representations of the data. The hidden layers 
of the network are especially important for learning these 
representations, which can be difficult to define manually. 
Another advantage of ANNs is their ability to generalize 
to new, unseen data. The ability of ANNs to learn these 
representations makes them particularly effective for 
feature extraction and selection, which is a crucial step 
in many classification tasks. During training, the network 
learns to generalize patterns in the training data to new, 
unseen data, allowing it to make accurate predictions on 
new samples. This generalization is particularly important 
for classification tasks, as the goal is often to make accurate 
predictions on new, previously unseen data. ANNs are 
particularly effective at feature extraction and selection, 
which is crucial for many classification tasks. In contrast, 
decision trees, random forest, and Naive Bayes algorithms 
rely on predefined features or feature selection techniques, 
which can limit their performance when dealing with 
complex data.14

The mathematics behind ANNs involves linear algebra, 
calculus, and statistics.14 Each neuron computes a 
weighted sum of its inputs, adds a bias, and then applies 
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plans, must be safeguarded with the utmost integrity. 
The systems must comply with legal frameworks like the 
Health Insurance Portability and Accountability Act in the 
United States or the General Data Protection Regulation 
in Europe, which impose stringent measures to protect 
patient data. In addition to privacy, security is another 
important aspect. The infrastructure supporting DSS 
must be fortified against potential cyber-attacks and 
unauthorized access. The integrity of the data and the 
systems is crucial not just for the privacy of the individuals 
but also for the accuracy and reliability of the decision 
support provided. A breach could not only compromise 
privacy but also the quality of healthcare delivery. The 
potential for bias in algorithmic recommendations is also 
a pressing ethical issue. Algorithms are designed and 
trained by humans and can inadvertently inherit biases 
present in the training data or the designers. This can 
lead to skewed or unfair recommendations, impacting 
certain patient groups disproportionately. It underscores 
the need for transparency, fairness, and accountability 
in the design and implementation of algorithms in DSS. 
The issue of informed consent also looms large. Patients 
must be adequately informed about how their data will be 
used and must have the autonomy to consent or decline. 
Transparency in the usage of data and the decisions made 
by DSS is integral to building trust and ensuring ethical 
standards.36

This paper looks at AI in the assessment and management 
of fetal risk as part of a bigger story that combines medical 
science, engineering, and ethics. It calls for a reevaluation 
of our current views and an interdisciplinary discussion. 
The main question is how AI can improve diagnostics and 
redefine our understanding of existence in the face of these 
disorders.

Mat e r ia  l s a n d Me t h o d s

Dataset
The dataset for the development of the AI-empowered DSS, 
entitled Trustworthy AI System for Fetal Neurological Risk 
Assessment and Diagnostic Support (TRUEAID), consisted 
of three-dimensional (3D) ultrasound images. For the 
trustworthy AI system for TRUEAID development, a total 
of 10,452 samples were acquired from 2021 to 2023. The 
images were extracted from 4D ultrasound recordings of 
fetuses made during the KANET test—a prenatal test for 
evaluation of the neurological development of fetuses 
during the third trimester of pregnancy. KANET is performed 
on both healthy and suspected pathological pregnancies. 
However, the pool of data on normally developing fetuses 
in healthy pregnancies is larger; the data retrieved for 
the purpose of development of the TRUEAID system was 
acquired from these cases. The dataset for the development 
of the diagnostic support system for the purpose of this 
project was acquired courtesy of Dr Panos Antsaklis from 
Alexandra Maternity Hospital in Athens. This KANET testing 

have been deemed inaccurate on the basis of performance 
inspection.21–25 As a result of performing postmarket 
surveillance, a vast amount of data was collected, and 
the team from Verlab has decided to utilize it and design 
algorithms capable of predicting medical device failure on 
the basis of their performance throughout the years.26–30 
Transcending the diagnostic challenges and ensuring safe 
and reliable measurements made by medical devices, the 
following paragraphs will briefly describe the applications of 
AI as DSS for aiding in diagnosis, treatment, and prognosis of 
the leading causes of mortality and comorbidity worldwide.

Artificial intelligence (AI) is very useful in predicting 
heart failure using electronic health records (EHR) and real-
time cardiac monitoring data. ML algorithms can analyze 
vast datasets, including clinical, laboratory, and imaging 
data, to identify early signs of heart failure, enabling 
proactive management.31,32 Another application of AI in the 
field of cardiology is ML technologies, which are employed 
for the prediction, classification, and outcome prediction 
of stroke. They analyze clinical data, imaging, and genetic 
information to classify stroke types, predict occurrences, 
and project recovery outcomes, significantly enhancing 
patient care.33

Artificial intelligence (AI)—based DSS in healthcare 
is an integral tool that assists clinicians and healthcare 
professionals  in  mak ing informe d and accurate 
decisions. These systems leverage a combination of 
technologies, data, and algorithms to provide insights and 
recommendations, enhancing the quality and efficiency 
of healthcare delivery. Healthcare DSS integrates a vast 
array of data sources, including EHRs, laboratory results, 
and medical imaging data. For instance, Kawamoto et al.34 
demonstrated that the integration of clinical data into 
DSS significantly improves clinical practice and patient 
outcomes. These systems utilize advanced algorithms 
and AI to analyze complex datasets, offering personalized 
recommendations for patient care. CDS systems, a subset 
of DSS, are particularly notable for their role in diagnosis 
and treatment. They analyze patient-specific data to 
provide evidence-based recommendations. A study by 
Osheroff et al.35 highlighted the role of CDS in reducing 
medical errors, improving healthcare quality, and reducing 
costs. However, the implementation of DSS in healthcare 
is not without challenges.

Ethical  and pr ivac y concerns are paramount, 
underscoring the intricate balance between technological 
advancement and ethical considerations. The ethical 
implications of using DSS were analyzed by Ammenwerth 
et  al.,36 shedding light on a spectrum of concerns that 
are as diverse as they are complex. One of the primary 
concerns, as mentioned by both the European Union AI 
Act and the United Kingdom regulation, is data privacy. 
With DSS integrating vast amounts of sensitive patient 
data, the risk of unauthorized access and data breaches is 
a significant concern. Patients’ confidential information, 
including medical histories, diagnoses, and treatment 
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Flowchart 1: Methodology workflow

Fig. 3:  Graphical user interface (GUI) for image classification

the classification power. Due to the fact that all images that 
are used as input to the diagnostic support system must be of 
the same size, the images were cropped to a 512 × 512 frame 
using a Python script that performed cropping on the edge 
of every image on the basis of color intensity of useful image 
frame pixels. However, not all useful image frames were of the 
same size; hence, padding with black pixels was necessary for 
some images in order to achieve the same image size.

Before the images could be used for the development of 
the expert system, it was necessary to perform image quality 
enhancement procedures in order to make extraction of the 
relevant features as easy as possible for the AI system. For 
this purpose, a set of filters was applied in order to denoise 
the images, removing unnecessary low-contrast differences 
in the images and increasing the pixel intensity variation in 
each image. Even though the differences between raw and 
processed images cannot be seen with the naked eye, the 
performance of the system is significantly improved following 
image quality enhancement procedures.

Once preprocessed, the dataset was analyzed to check for 
significant class imbalance in the dataset. As class imbalance 
was noticed, dataset augmentation was performed for the 
minority classes, all classes except the ”facial movement 
class.” Augmentation was performed using a Python script 
that rotates every image in different angles up to 60° angle 
to account for as many variations as possible and contribute 
to the generalization power of the model.

Artificial Intelligence System Development
Convolutional neural networks (CNN) have proven their 
usefulness for computer vision problems and image 
classification models. CNNs automatically learn and create 
hierarchical patterns in the data, which is particularly 
useful for complex tasks like image recognition. They apply 
filters/kernels to input images to create feature maps that 
identify patterns like edges, textures, and more complex 
patterns in deeper layers. CNNs use shared weights across 
their architecture, reducing the number of parameters to 
be learned and making the model more efficient. Weight 

center in Athens represents the busiest testing center in the 
KANET network; hence, it has the most extensive scope of 
data at its disposal.

The methodology employed in this study is systematic 
and adheres to rigorous scientific standards, encompassing 
four pivotal stages: data preprocessing, data augmentation, 
convolutional neural network (CNN) model development, 
and interface development, contained a series of steps that 
had to be performed in sequence in parallel with evaluation 
of the results of those steps (Flowchart 1).

As the first step in the development of an AI-based 
algorithm for classification is the classification of data into 
corresponding categories, a graphical user interface (GUI) 
was developed to facilitate this step. The GUI is shown 
in Figure 3. The raw dataset is loaded, and each image 
is classified into its corresponding category on the basis 
of the information provided by gynecologists who have 
performed the KANET test.

Upon classification of data, it was necessary to perform 
anonymization. Each raw image contained a lot of additional 
information in addition to the useful image frame. Hence, it 
was necessary to crop every image to fit a certain frame and to 
remove as much background as possible in order not to hinder 
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Table 1:  Example confusion matrix
True label Predicted label

Class 1 TN FP TN TN
Class 2 FN TP FN FN
Class 3 TN FP TN TN
Class 4 TN FP TN TN

precision or positive predictive value (PPV), negative 
predictive value (NPV), and accuracy. These parameters are 
defined by mathematical formulas (Eqs. 2–8).

Sensitivity (recall) or TP rate (TPR) is the proportion of 
positive instances that are correctly classified. It indicates the 
proportion of actual positives that are correctly identified.

sensitivity recall
TP

TP FN
 � � �

�
� (2)

Specificity or TN rate (TNR) is the proportion of negative 
instances that are correctly classified. Specifically, it measures 
the proportion of actual negatives that are correctly identified.

specificity
TN

TN FP
�

�
� (3)

Precision or PPV indicates the proportion of positive 
identifications that were actually correct. In other words, 
of all the instances classified as positive, how many were 
actually positive?

precision
TP

TP FP
�

�
� (4)

Negative predictive value (NPV) is the proportion of negative 
instances among the instances that are predicted as negative. 
In other words, NPV indicates the probability that a predicted 
negative result is indeed negative.

NPV
TN

TN FN
�

�
� (5)

Accuracy measures the proportion of all classifications that 
were correct.

accuracy
TP TN

TP TN FP FN
�

�
� � �

� (6)

One of the primary challenges in many real-world 
classification problems is class imbalance, where one class 
significantly outnumbers the other(s). In such cases, accuracy 
can be misleading. For instance, in a dataset where 95% of 
instances are negative, and 5% are positive, a naive classifier 
that predicts everything as negative would achieve a 95% 
accuracy rate, even though it’s not making any useful 
prediction.

While accuracy provides a general measure of 
classification performance, it doesn’t always provide a 
complete picture, especially in cases with imbalanced 
classes or when different types of classification errors 
carry different costs or implications. Even though it gives 
an overall measure of how many instances are correctly 
classified, it doesn’t differentiate between the types of 
errors being made. Two models with the same accuracy 
might have very different numbers of FPs and FNs. The 
F1 score and Matthews correlation coefficient (MCC) can 
provide a more comprehensive understanding of a model’s 
performance in such situations.

assignment and weight sharing are of particular usefulness in 
image recognition tasks as they lead to translation invariance, 
meaning the network can recognize patterns irrespective 
of their position in the input space. As discussed previously, 
medical images are susceptible to noise; hence, CNN’s 
resistance to noise and distortions in the input image makes 
them robust in varied conditions.

The main characteristic of a CNN is its depth, meaning the 
number of convolutional layers and the number of neurons 
used in each convolutional layer to perform classification. 
Over 100 iterations of the CNN were performed in order to 
test a multitude of different combinations of:

•	 The number of convolutional layers.
•	 Number of filters.
•	 Number of neurons in each layer.
•	 Activation functions of convolutional layers.
•	 Activation functions of fully connected layers.

Artificial Intelligence System Evaluation
The main instruments used to determine the CNN performance 
are training and validation loss and accuracy values at the end 
of the training and training graphs. However, in order to 
evaluate the performance of a classifier, it is instrumental to 
show and evaluate the confusion matrix of internal system 
validation during training and to derive true positives (TP), 
true negatives (TN), false positives (FP), and false negatives 
(FN) for each class. These parameters are defined as:

•	 TP: The number of correct predictions for the particular 
class.

•	 TN: The number of correct predictions for all other classes.
•	 FP: The number of incorrect predictions where other 

classes were predicted as the particular class.
•	 FN: The number of incorrect predictions where the 

particular class was predicted as some other class.

Table 1 shows an example of a confusion matrix where we 
evaluate the TP, TN, FP, and FN for class 2 of a multiclass 
classifier. In this case, TP is represented at the intersection 
of the predicted label and the true label. FP are the values 
in the ”class 2” column but outside the ”class 2” row. Thus, 
FP = sum of all values in the ”class 2” column–TP. FN are 
the values in the ”class 2” row but outside the ”class 2” 
column. Thus, FN is the sum of all values in the ”class” 
row–TP. TN are the remaining values but can be calculated 
as total–FP–FN–TP.

True positive (TP), TN, FP, and FN are then used to 
calculate the system’s performance metrics. Conventionally 
used performance metrics are sensitivity (recall), specificity, 
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Table 2:  Summary performance evaluation during CNN training

CNN iteration Specificity (TNR) Sensitivity (recall/TPR) Precision (PPV) NPV Accuracy F1 score MCC

No. 1 0.92 0.30 0.30 0.94 0.69 0.30 −0.02

No. 20 0.91 0.19 0.18 0.82 0.78 0.19 0.06

No. 60 0.99 0.87 0.99 0.918 0.97 0.91 0.86

No. 85 1.00 0.51 1.00 1.00 0.68 0.68 0.58

No. 126 0.99 0.95 0.96 0.98 0.94 0.96 0.94

The F1 score is the harmonic mean of precision and 
sensitivity (recall) (Eq. 2). It gives a balanced measure 
between precision and recall when the class distribution 
is uneven. By using the F1 score, we ensure that both FPs 
(precision aspect) and FNs (recall aspect) are taken into 
account. It’s especially useful when FNs and FPs have 
different impacts on the classification power. It is very 
useful for imbalanced datasets. As mentioned, the F1 
score can provide a more realistic measure of a classifier’s 
performance on imbalanced datasets by balancing the 
importance of precision and recall.

F score
precision sensitivity

precision sensitivity
1 2 � �

�� �
�

� (7)

Matthews correlation coefficient (MCC) is a metric that 
gives a balanced measure even when the class sizes 
are highly imbalanced. MCC is essentially a correlation 
coefficient between the observed and predicted binary 
classifications. It returns a value between −1 and +1. 
A coefficient of +1 represents a perfect prediction, 0 
indicates no better than a random prediction, and −1 
means a total disagreement between the prediction and 
the actual class. Unlike accuracy, which only considers TPs 
and TNs, MCC takes into account TPs, TNs, FPs, and FNs. This 
gives a more holistic view of the classifier’s performance. 
MCC is especially useful in datasets where the classes are 
of very different sizes.

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN
�

�� � � �� �
�� �� �� �� �� �� �� �

� (8)

Graphical User Interface Development
A suitable user interface is essential for the effective 
utilization of AI DSSs in healthcare. The implementation of 
appropriate user interfaces for AI DSSs in healthcare aligns 
with the current guidelines and regulations. The regulation 
emphasizes the necessity for user-friendly interfaces, 
ensuring the safety and performance of medical devices, 
including those incorporating AI technology, within the 
healthcare system. Therefore, once developed and proven 
useful, the TRUEAID DSS required a GUI in order to make it 
comprehensible for medical experts.

Re s u lts

The results of training the DSS can be represented in a 
multitude of ways. The first results of training that are 
obtained as early as during the training process itself 
are the performance metrics such as loss and accuracy. 
The loss function is plotted throughout CNN training, and 
the graphs are monitored for convergence. As mentioned 
in the methodology section, CNN had over 100 iterations 
until an architecture with satisfactory performance was 
achieved. However, the most effective way of testing the 
performance of a CNN is by monitoring the performance 
metrics such as specificity, sensitivity, precision, NPV, 
accuracy, F1 score, and MCC.

Table 2 represents a summarized version of the training 
process and achieved performance parameters for different 
CNN iterations.

It can be deduced from Table  2 that iteration 126 was 
the point at which the training process that underpinned 
significant changes made to the CNN architecture was halted. 
After that, minor fine-tuning was performed in order to 
inspect the robustness of the developed system.

A glance at the performance metric reveals that the 
model demonstrates remarkable adeptness in discerning 
negative instances for each class. This uniform excellence 
in specificity ensures that the classifier rarely mislabel 
instances from other classes. Recall somewhat varies 
between the classes. While classes such as ”face” and 
”legs” are emblematic of state-of-the-art detection of 
TPs, other classes exhibit nuanced performances. The 
”hand-to-face” class displays a decent but not exemplary 
recall of 0.894, suggesting that there’s a subset of this 
class the model is not capturing effectively. ”Thumb,” 
although good, still leaves some room for improvement 
with a sensitivity of 0.937. In terms of precision, ”face” 
and ”legs” are the pinnacles of perfection, with scores 
at 1.00, reinforcing that their positive predictions are 
consistently accurate. ”Thumb” showcases commendable 
precision at 0.929, indicating its predictions are mostly on 
the mark. However, ”hand-to-face” presents a precision 
of 0.902, which, though good, signals that occasional 
FPs do creep into its predictions. The accuracy metric 
provides a comprehensive view of the model’s overall 
correctness. ”Face” and ”legs” have impeccable accuracy, 
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Flowchart 2: Block diagram of system validation

Table 3:  Validation performance evaluation

Class Specificity (TNR) Sensitivity (recall/TPR) Precision (PPV) NPV Accuracy F1 score MCC

Face 0.98 1.00 0.95 1.00 0.94 0.97 0.97

Hand-to-face 0.97 0.89 0.89 0.97 0.95 0.89 0.87

Legs 1.00 0.94 1.00 0.98 0.98 0.97 0.96

Thumb 0.98 0.93 0.95 0.97 0.97 0.94 0.90

Overall 0.98 0.94 0.95 0.98 0.96 0.95 0.89

 

Fig. 4:  Scrolling through the loaded 4D ultrasound video

but other classes, such as ”thumb” and ”hand-to-face,” also 
tread the higher echelons with scores of 0.972 and 0.953, 
respectively. These scores reinforce the model’s overall 
reliability, but they also underscore the importance of 
examining other metrics for a nuanced understanding. 
The F1 score captures the harmonic mean of precision and 
recall. Stellar performances by ”face” and ”legs” are echoed 
here, emphasizing their balanced prowess. ”Thumb,” too, 
with an F1 score of 0.948, showcases a healthy balance 
between precision and recall. However, the ”hand-to-face” 
class, with its F1 score of 0.898, reflects the earlier observed 
imbalance. The MCC for class ”legs” has a perfect score of 
1.00. ”Face” and ”thumb” also resonate excellently with 
MCC values of 0.996 and 0.915, respectively, highlighting 
their near-perfect classification. However, ”hand-to-face,” 
with its MCC of 0.874, underpins the challenges it faces in 
delivering a balanced classification.

The DSS was validated in two distinct manners 
(Flowchart 2). The first validation was performed using 
conventional methodology, where 20% of the initial dataset 
was used for subsequent validation of the system. The 
second mode of validation was real-time validation, where 
4D ultrasound recordings, whose frames were not previously 
presented to the network, were parsed at random time points 
to evaluate the system performance.

The results of the conventional validation are represented 
in Table 3.

When analyzing the performance evaluation table, it 
can be seen that the performance is comparable with the 
system’s internal validation. The performance metrics do not 
deviate significantly and are within ±2% in comparison with 
the internal validation of the last CNN architecture.

The second validation option is dedicated to the 
evaluation of system performance in real-time. Hence, it 
required the development of an interactive decision support 
interface and visualization of the entire system.

The TRUEAID system was visualized by designing a 
GUI that includes the developed model that works in the 
background every time a frame of a recorded 4D ultrasound 
video is deemed to be parsed through the system. In case 
any of the characteristic movements belonging to classes 
”face,” ”hand-to-face,” ”legs,” or ”thumb” are recognized, 
the class of movement is displayed on the screen. In case 
none of these movements are present in the parsed frame, 
the frame is deemed as ”pathological.”

As can be seen from Figure 4, the interactive TRUEAID 
system allows for loading of a video, playing it, and 
pausing it at a certain frame to parse that frame through 
the developed CNN. The physician can scroll through the 
entire video, take any frame, and parse it through the CNN 
(Fig. 4).

Upon reaching the desired frame, the physician presses 
the ”pause and predict” button, and the frame is parsed 
through the CNN. This process takes up to 10 seconds, as 
the model was optimized for performance in both high 
and low computational power settings. Once the frame 
is parsed, the result is displayed in the form of a pop-up 
window (Figs 5 to 7).
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Fig. 6:  Result of TRUEAID when facial movements are recognized

Fig. 7:  Result of DSS when no characteristic movements are 
recognized

Fig. 5:  Result of TRUEAID when hand-to-face movements are 
recognized

Co n c lu s i o n

The overall aim of this work was to establish new knowledge 
in the prediction of risk for neurological disorders and 
to explore the feasibility and trustworthiness of a new 
technology for this purpose. Achievement of this goal 
shall contribute to the advancement in the management 
of noncommunicable diseases and a very slow process of 
the digital transition. The specific objective of the project 
was to develop TRUEAID—a trustworthy AI system for fetal 
neurological risk assessment and diagnostic support. This 
project is driven by ambition and commitment to bring 
AI technology to actual use in obstetrics and gynecology 
for the prevention and detection of neurological risk in 
order to improve the well-being of affected populations 
(pregnant women, mothers and infants, and children with 
neurological conditions). Once developed and proven, 
TRUEAID can be used anywhere in the world, from low-
resource to high-resource settings, enabling better care 
of affected populations and supporting the fight against 
noncommunicable neurological diseases.

Trustworthiness of a developed AI system encompasses 
the following characteristics: transparency, fairness, 
reliability, and safety. Transparency in AI is a multifaceted 
concept, encompassing the need for clarity in how AI 
systems operate and make decisions. This goes beyond 
the technical realm, involving the communication of AI 
processes to users and stakeholders in a comprehensible 
manner. As AI is commonly considered a black box, it is 
necessary to eliminate the doubt in the processes governing 
decision-making by the development of interpretable 
models where the decision-making pathways are not just 
a black box but accessible and understandable. TRUEAID 
is developed and described in a transparent way so that 
every step of the process leading to the final product is 
thoroughly explained, enabling a better understanding of 
the entire decision-making process.

Trustworthy AI System for Fetal Neurological Risk 
Assessment and Diagnostic Support (TRUEAID) solution can 
revolutionize the detection of neurological risk, enabling 
early possible and preliminary diagnosis during the antenatal 
period and allowing investigation of possible treatments in 
this phase as well.
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